بنام آنکه هستی نام از او یافت فلک جنبش زمین آرام از او یافت

Supplements and the kidney Is it body building or kidney damaging?

19th The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran Dr. Mohammad Tamaddondar Nephrologist Hormozgan university of medical science

Home message

✓ Creatine use seems not affect kidney function(in recommended dose)

- ✓ High protein diet specially animal type is harmful
- \checkmark Anabolic and rogenic steroids is banned
- ✓ High dose vitamins not recommended

Bodybuilding

The use of progressive resistance exercise to develop muscle building by hypertrophy

Appearances of muscular definition and symmetry (rather than athletic ability).

✓ Over 95% of bodybuilders use dietary supplements, with the two most common being <u>creatine monohydrate</u> and <u>protein</u>

 ✓ Non-nutritional, performance-enhancing drugs, such as veterinary-grade <u>vitamin supplementation</u>, and/or <u>anabolic</u><u>androgenic steroids (AAS),Growth Hormone (GH)</u>are also used .

Most of the extreme nutritional, drug and training strategies in bodybuilding are from <u>non-evidence-based</u> sources, and potential adverse health impact effect are possible.

1-Which organ doesn't play role in <u>creatine</u> production ?

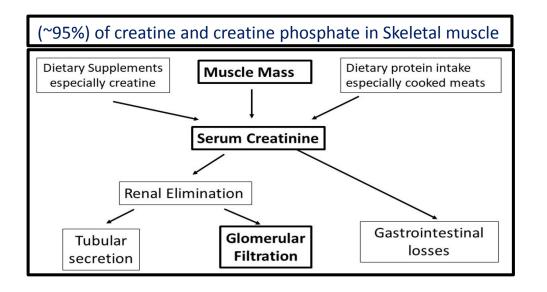
a-liver b-kidney c-pancreas d-muscle

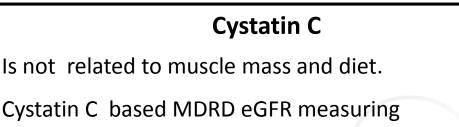
2-Which protein doesn't increase <u>GFR?</u> a-white egg b-fish c-soy d-beef

OBJECTS

✓ Creatine

✓ Protein


✓Anabolic androgenic steroids /GH


✓ vitamins

TEHIRAN 2023

Assessment of kidney function presence of unrecognized CKD

Increased when using anabolic androgen steroid (AAs)

Assessment of Dietary Protein Intake

- **1. Measuring urinary urea or nitrogen excretion** (objective methods, reflect the intake over only a few days before urine collection, not for protein source intake or other macronutrients)
- 2. Self-reporting food intake via 24-h dietary recall
- **3.** Food diary, A 3- or 4-day food diary contains a complete record of foods and

beverages consumed over those days

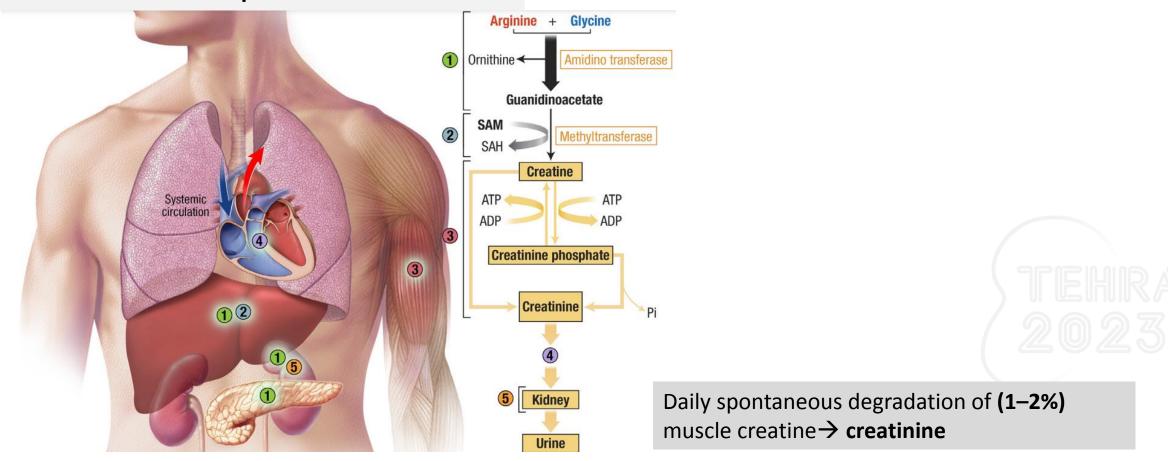
4. Food frequency questionnaire (FFQ), is widely used to investigate food intake over extended periods of time

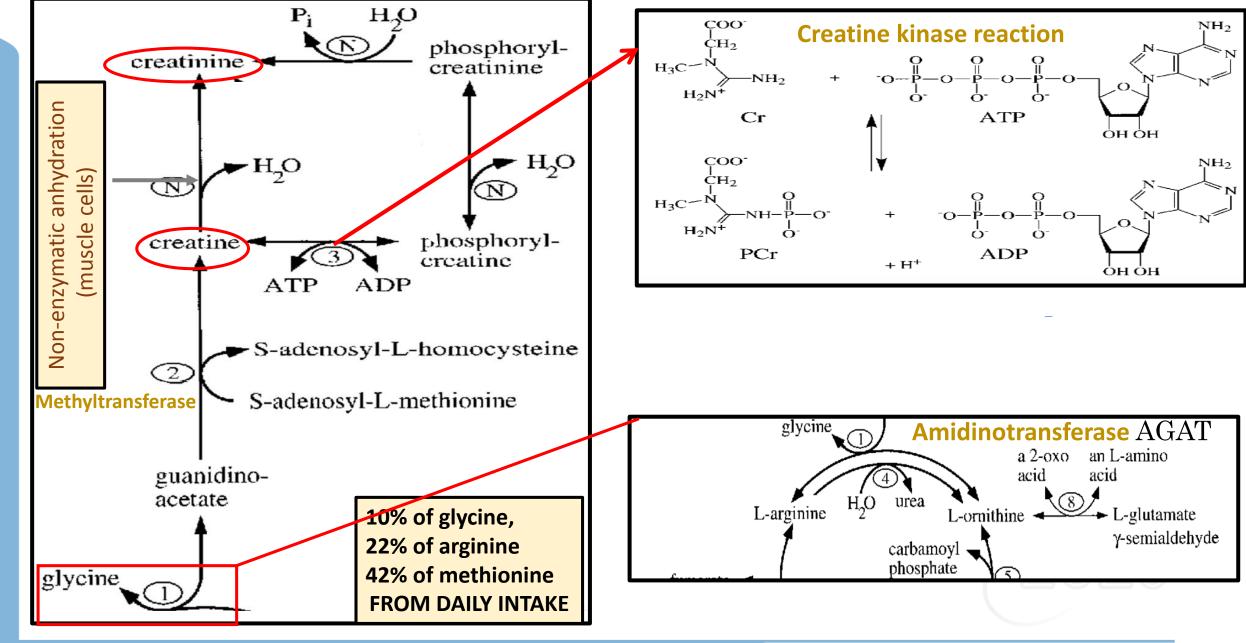
✓ Creatine

✓ Protein

✓Anabolic androgenic steroids /GH

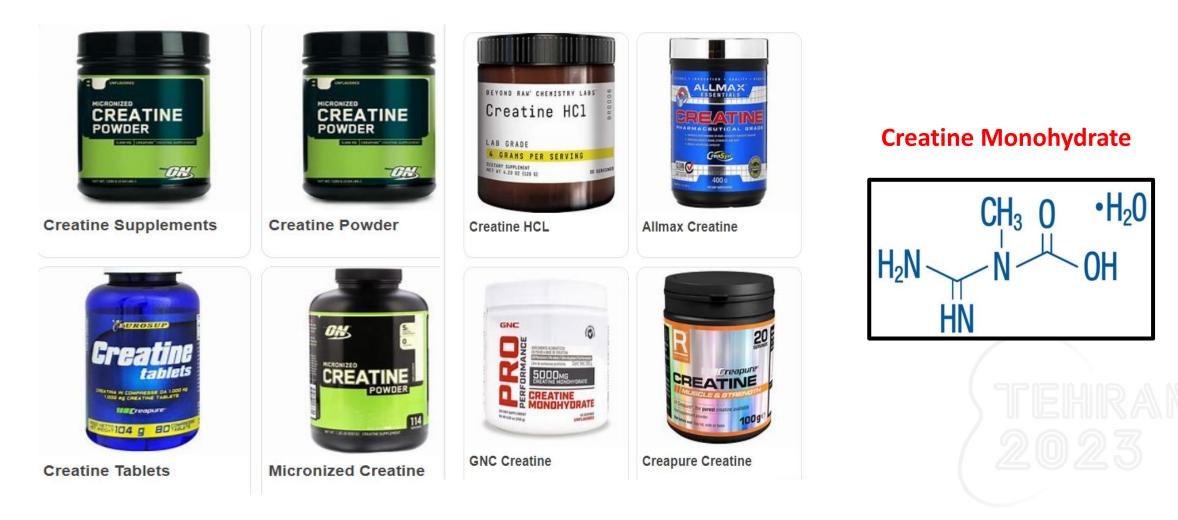
✓ vitamins


TEHIRAN 2023



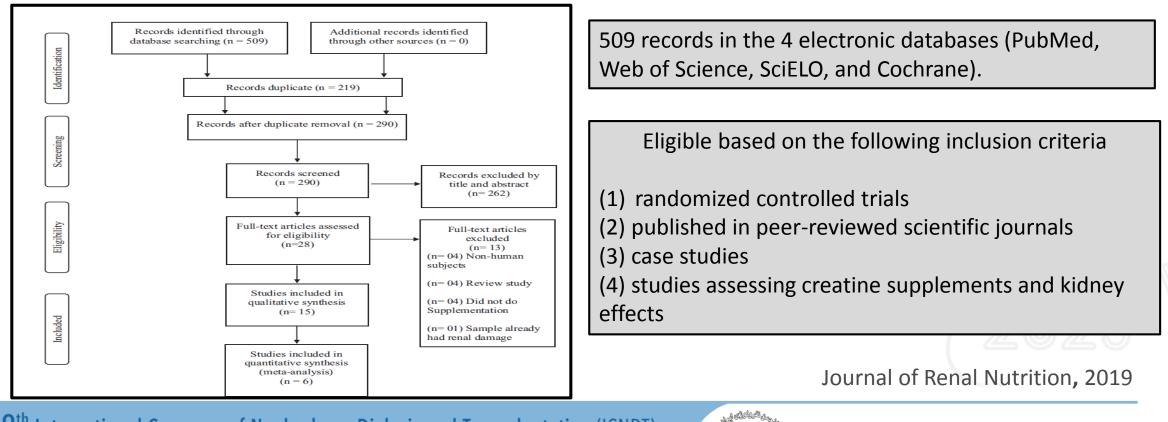
Creatine phosphate \rightarrow available source of energy, especially during the early phases of intense muscular contractions.

In skeletal muscle


25% free creatine, 75% creatine phosphate **are in equilibrium**

20 gram loading for 5 days ,then 5 gram daily

REVIEW ARTICLE


Effects of Creatine Supplementation on Renal Function: A Systematic Review and Meta-Analysis

Journal of Renal Nutrition The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation, 30 Jul 2019, 29(6):480-489

After evaluating 290 non-duplicated studies,

15 were included in the <u>qualitative</u> analysis 6 in the <u>quantitative</u> analysis

Do not affect kidney function

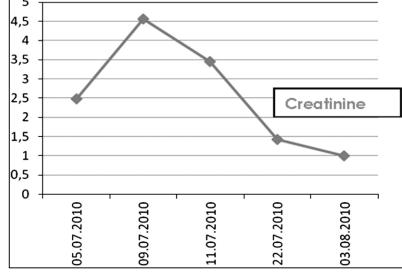
					Supp	elementation Program (Prote	ocol)	Conclusion		-	Kalda	Frank Annual Annual Practice	10.0 0	0	45.75 /16 5 1 - 1	0.0	Desite for a bid	Mol Cell Biochem
_	No	Author(s)	Title	Age (y)	Type of Supplement	Daily and Weekly Quantities	Period in Days and Weeks	Regarding Creatine Supplementation	Journal	· · · ·	Kreider et al. ¹⁶	Long-term creatine supplementation does not significantly affect	19.2 ± 2	Creatine monohydrate with	15.75 g/d for 5 d and an average of 5 g/ d thereafter in 5-10 g	0-6 mo 7-12 mo 12-21 mo	Do not affect kidney function	Moi Cell Biochem
	1 F	Robinson et al. ³⁷	Dietary creatine supplementation does not affect some	26 ± 8	Creatine	5 g/d 4 times a day for 5 d, then 3 g/d for 8 wk	8 wk and 5 d	Do not affect kidney function	Br J Sports Med			clinical markers of health in athletes		carbohydrate drink	doses following supervised training sessions			
13	2 F	Robinson et al. ³⁷	haematological indices, or indices of muscle damage and hepatic and renal function Dietary creatine supplementation does	27 ± 6	Creatine	5 g/d 4 times a day for 5 d, then 3 g/d for 8 wk	8 wk and 5 d	Do not affect kidney function	Br J Sports Med	8	Carvalho et al. ⁴	Creatine supplementation associated with resistance training does not alter renal and hepatic functions	23.0 ± 3.2* 24.3 ± 4.9	Creatine monohydrate	20 g/d divided into 4 times daily for 7 d and 0.03 g/kg body weight/ day of creatine monohydrate for 7 wk	8 wk	DO not affect kidney function	Rev Bras Med Esporte
			not affect some haematological indices, or indices of muscle damage and hepatic and renal function							9	Carvalho et al.4	Creatine supplementation associated with resistance training does not alter renal and hepatic functions	23.0 ± 3.2* 25.2 ± 7.4	Creatine monohydrate	20 g/d divided into 4 times daily for 7 d and 5 g/d for 7 wk	8 wk	Do not affect kidney function	Rev Bras Med Esporte
		ugaresi et al. ³⁴ Gualano	Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet? Creatine	27 ± 5* 24 ± 3	monohydrate	20 g/d for 5 d, divided into 4 times daily, followed by 5 g/d throughout the trial 5 g/d once daily	12 wk	Do not affect kidney function Do not affect kidney	J Int Soc Sports Nutr Eur J Appl Physiol	1	Groeneve et al. ⁵		58.4 ± 10.9 57.7 ± 11.1		5 g/d 2 times daily	4 wk 8 wk 16 wk 32 wk 48 wk	Do not affect kidney function	Int J Sports Med
		et al. ¹⁵		57.5 ± 5.0	monohydrate	o gra anoc dany		function	La organ nyao	1	Gualano et al. ⁴⁴	Effects of creatine supplementation on renal function: a randomized, double- blind, placebo- controlled clinical trial	$24.6 \pm 4.2^{\circ}$ 24.2 ± 5.0	Creatine	0.3 g/d/kg of body weight for the first week, and 0.15 g/d/kg of body weight for the next 11 wk	At any time 12 wk	Do not affect kidney function	Eur J Appl Physiol
		Mayhew et al. ³⁸ Cancela	creatine supplementation on liver and kidney functions in American college football players	20.1 ± 0.8° 20.5 ± 1.4	Creatine monohydrate	Between 5 and 20 g/d (13.9 \pm 5.8 g) for 5 y and 6 mo	~132 wk	Do not affect kidney function Do not affect kidney	Int J Sport Nutr Exerc Metab Br J Sports Med	1:	2 Neves et al. ³⁵	Effect of creatine supplementation on measured glomerular filtration rate in postmenopausal	57 ± 3* 59 ± 3	Creatine monohydrate	20 g/day for 7 d divided into 4 equal doses, followed by single doses of 5 g/d for the next 11 wk	12 wk	Do not affect kidney function	Appl Physiol Nutr Metab
		et al. ⁴⁰	supplementation does not affect clinical health markers in football players	19.0 2 3.5	monohydrate		12 WK and Th	function		1:	B Poortman et al. ⁴¹	women s Effect of short-term creatine supplementation on renal responses in men	25.1 ± 2.7	Creatine monohydrate	20 g/d divided into 4 times daily for 5 d	5 d	Do not affect kidney function	Eur J Appl Physiol

Case reports of affecting kidney function

					Supplementation Program (Protoco	Conclusion		
No	Author(s) Title		Age (y)	Type of Supplement	Daily and Weekly Quantities	Period in Days and Weeks	Regarding Creatine Supplementation	Journal
1	Taner et al.42	The effects of the recommended dose of creatine monohydrate on kidney function: case report	18	Creatine monohydrate	20 g/d for 5 d and maintenance (1 g/d for the next 6 wk)	5 d and 6 wk	Affects kidney function	Nephrol Dial Transplant
2	Thorsteinsdottir et al. ³⁹	Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate: case study	24	Creatine	5 g/d 3 times per week, totaling 15 g/wk	24 wk	Affects kidney function	J Ren Nutr
3	Gualano et al. ³⁶	Effect of short-term high dose creatine supplementation on measured GFR in a young man with a single kidney: case report	20	Creatine monohydrate	20 g/d for 5 d divided into 4 equal doses, followed by single doses of 5 g/d for the next 30 ds	5 d and 4 wk	Do not affect kidney function	Am J Kidney Dis
4	Barisic et al.43	Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy: case report	18	Creatine monohydrate	20 g/d, given in 4 single dosages for 12 d, and followed by a maintenance dosage of 5 g/d	12 d and 112 wk	Affects kidney function	Neuropediatrics

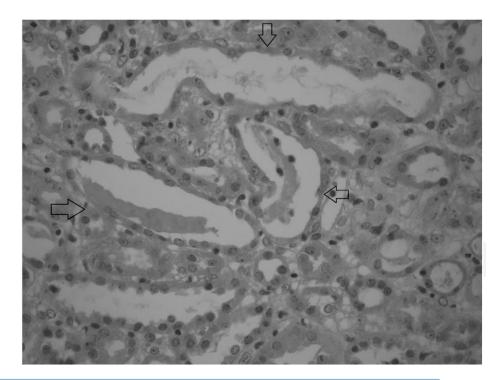
NDT Plus (2011) 4: 23–24 doi: 10.1093/ndtplus/sfq177 Advance Access publication 11 October 2010

Case Report


The effects of the recommended dose of creatine monohydrate on kidney function

Healthy 18y/o man, 2-day history of N,V and epigastric pain. No signif PMHx/FHx,

74/Kg, BMI=24.18 kg/m2, Bpx 150/90 mmHg, K=3.56 ,Na=148 mmol/L, Ph= 7.36, Hct 36.8, T.protein 64.87 g/L (normal 64–87 g/L). UA→ proteinuria, daily 284 mg. The other Lab test and 2nd W/U were normal.


Creatine monohydrate, induction (20 g/day ×5 /d) and maintenance (1 g/day for the next 6 weeks).

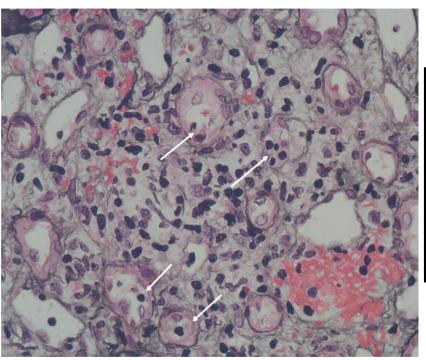
He was discharged without any complaints on the 25th day, BW=72Kg.

- Focal tubular injury with dilatation of tubular lumina and flattening of the tubular epithelial cells,
- sloughed epithelial cells, leucocytes and cellular debris in the tubular lumina;
- No pigmented casts
- Normal glomeruli.
- IF \rightarrow Neg

Acute Renal Failure in a Young Weight Lifter Taking Multiple Food Supplements, Including Creatine Monohydrate

Journal of Renal Nutrition, 2019

A previously healthy 24-y/o man, acute abdominal pain, polydipsia, and polyuria. BPx=152/100 mm Hg,left flank tenderness. Cr=3.8 mg/dL, initially increased to 4.7 mg/dL and then rapidly decreased to 2.5 mg/dL, proteinuria 386 mg/day, UA \rightarrow 1 to 3 RBCs, The other Lab test and 2nd W/U were normal.


5 days after the onset of symptoms, no proteinuria, normal GFR, and normotensive in OPD f/u.

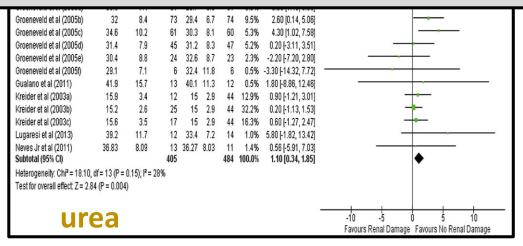
Dandelion leaf	
	Creatine monophosphate 5 g (15 g/week)
Uva ursi	Choline bitartrate
Grean tea	Inositol
Peppermint	Phosphatidylcholine 75 mg
Ginger	Phosphorus 2,120 mg
Licorice	Folic acid 400 µg
Chamomile	Niacin 40 mg
Hawthorn	Calcium 53 mg
Cassia	Iron 2.2 mg
Mate	Chondroitin sulfate
Chicory	Glucosamine HCl
Citrus fruit	Sodium 375 mg
Guarana seed	Potassium 200 mg
Cotinue coggygyria	Choline bitartrate
Scop bark	Inositol
Red panax ginseng	Phosphatidylcholine 75 mg
Garcinia cambogia	Acetyl L-carnitine
	Peppermint Ginger Licorice Chamomile Hawthorn Cassia Mate Chicory Citrus fruit Guarana seed Cotinue coggygyria Scop bark Red panax ginseng

*Values represent daily oral intake; left blank when not quantified.

generalized interstitial edema, infiltrate, most prominent in the juxtamedullary cortex and medulla, lymphocytes admixed with eosinophils $IF \rightarrow$ were negative.

EM→ normal glomerular architecture, without evidence of immune complex deposition.

Interstitium interstitial edema and a lymphocytic inflammatory infiltrate with <u>focal interstitial hemorrhage</u>, Arrows point to areas of tubulitis.



REVIEW ARTICLE

Effects of Creatine Supplementation on Renal Function: A Systematic Review and Meta-Analysis

Effects of creatine supplementation on urea and creatinine

The findings indicate that creatine supplementation does not induce renal damage in the studied amounts and durations

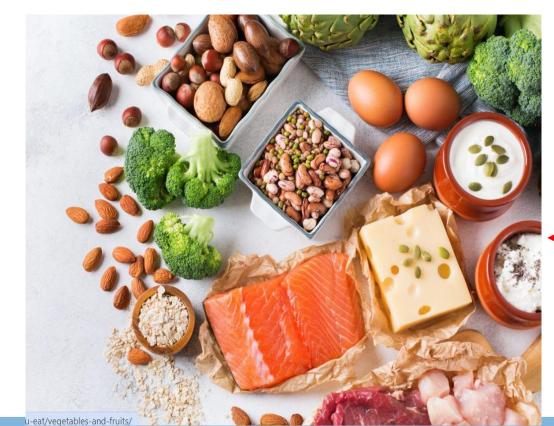
(standardized mean difference = 1.10, 95%confidence interval 0.34-1.85, P = .004, I² = 28%).

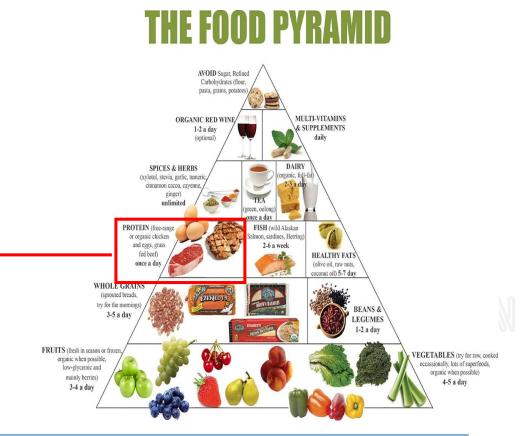
0.96 10.09, 1.84 Carvalho et al (2011b) Gualano et al (2011) 0.3 12 8.7% 0.85 [0.02, 1.68] 13 0.8 0.1 Kreider et al (2003a) 1.41 0.2 12 1.35 0.1 44 14.3% 0.47 [-0.18, 1.11] 1.42 0.2 25 1.35 0.1 0.48 [-0.02, 0.98] Kreider et al (2003b) 44 24.0% 1.35 Kreider et al (2003c) 0.2 0.00 [-0.56, 0.56] 17 1.35 0.1 44 19.0% Lugaresi et al (2013) 1.2 12 1.1 0.1 14 9.4% 0.63 (-0.16, 1.42) 0.78 Neves Jr et al (2011) 13 0.78 0.09 11 9.2% 0.00 (-0.80, 0.80) Subtotal (95% CI) 115 193 100.0% 0.48 [0.24, 0.73] Heterogeneity: Chi2 = 8.98, df = 7 (P = 0.25); I2 = 22% Test for overall effect; Z = 3.88 (P = 0.0001) creatinine Favours Renal Damage Favours No Renal Damage

(standardized mean difference = 0.48, 95% confidence interval 0.24-0.73, P = .001, $I^2 = 22\%$),

✓ Creatine

✓ Protein


✓Anabolic androgenic steroids /GH


✓ vitamins

TEHIRAN 2023

Plants proteins: pulses, such as nuts, dried peas, and lentils, (have HP content) Milk protein (whey or casein), good quality protein Eggs Red meat: Beef, pork, mutton, and game (e.g., reindeer and moose) White meat: chicken and turkey Meat, fish, cheese, and rice / other grains \rightarrow strong net-acidifying foods Fruit, legumes, vegetables, and potatoes \rightarrow strong net-alkalinizing foods

ACUTE EFFECT OF HIGH-PROTEIN ON GFR

SINGLE MEAL	6 healthy individuals	Non-albuminuric T2DM		
Tuna fish	Rise in measured GFR	Rise in measured GFR		
Boiled egg (double the amount of Tuna fish protein)	Did not change GFR	Did not change GFR		
Beef (200 g)	Rise in measured GFR			
Vegetable protein Equal amount to beef (baked skim soy with soy sauce, which has an amino acid composition similar to beef)	Rise in measured GFR	Conflicting effects of HP intake on GFR and urinary albumin excretion in human studies		

PROTEIN INTAKE

	good quality protein g/kg/day	energy consumption (E%)
WHO recommendations General population	0.83	10–35%
Nordic Nutrition Recommendations Elderly		
<64 y/o	0.8–1.5	10–20 %
>= 65 y/o	1.1–1.3	15–20 %
Athletes	1.2–1.7	
Chronic Kidney Disease	0.8	
Diabetes	1–1.5	15– 20%
12-15 December 2023 . Homa Hotel, lehran	SOCIETY OF NEW ME	

High-Protein Diets

Protein content of more than **25 E% of energy intake**, which corresponds to more than **2.0 g protein/kg BW daily**.

Research Article

Journal of Nutrition and Metabolism, 2016 .doi.org/10.1155/2016/9104792

A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males

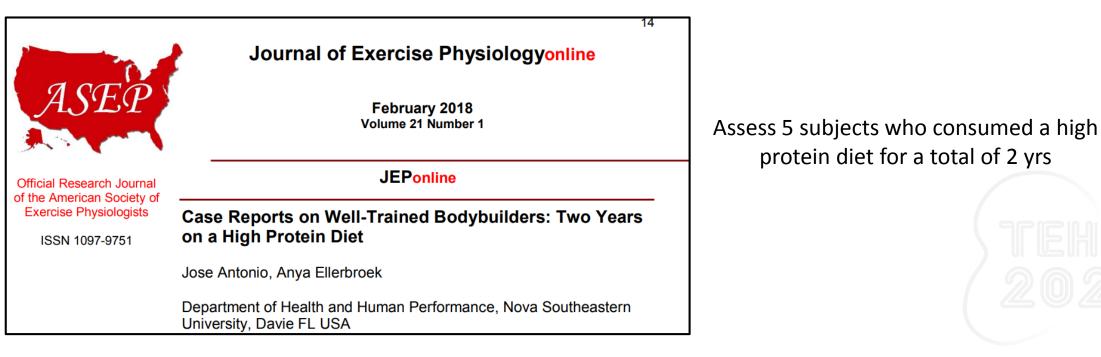
Jose Antonio, Anya Ellerbroek, Tobin Silver, Leonel Vargas, Armando Tamayo, Richard Buehn, and Corey A. Peacock

<u>**14**</u> healthy resistance-trained men completed the randomized crossover study (mean age 26.3 \pm 3.9 yr, height 178.5 \pm 8.4 cm; and average

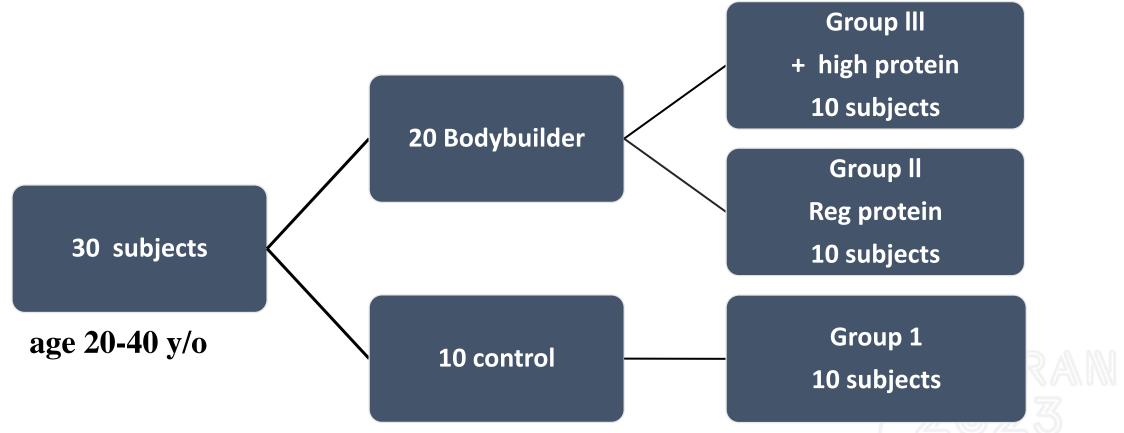
years of training 8.9 ± 3.4 yr).

10 white males, 3 black males, and 1 Pacific Islander

Food diary (i.e., three days per week for one year) of their food intake via a smartphone app (MyFitnessPal) ; 100–168 daily dietary self-reports

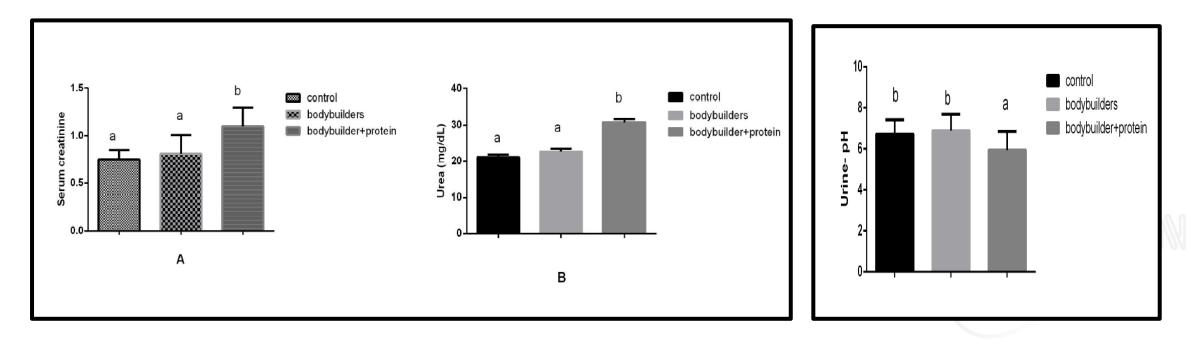

Body composition, via the Bod Pod (COSMED USA, Concord, CA) whole body densitometry using air displacement.

Glucose, BUN, CRE, GFR, Na, K, Cl, carbon dioxide, Ca, T protein, albumin, globulin, T Bili, ALP AST ALT, TG Chol, LDL HDL.

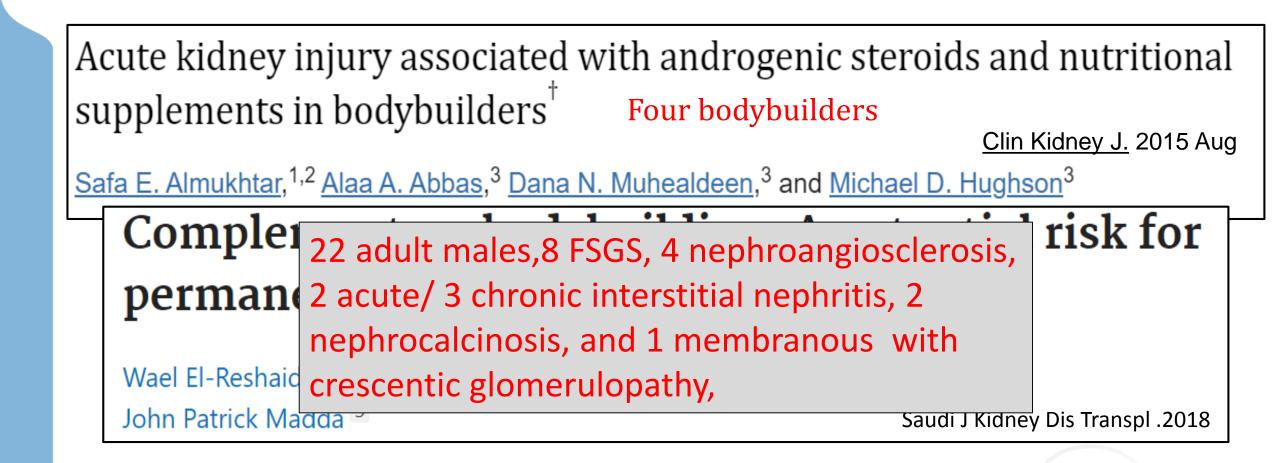

- **1.** Normal eating phase, (mean \pm SD) 29.94 \pm 5.65 kcals/kg/day and 2.51 \pm 0.69 g/kg/day of protein for 2 months and 4 months
- 2. High protein phase, to 34.37 ± 5.88 kcals/kg/day and 3.32 ± 0.87 g/kg/day of protein for 2 months and 4 months (significantly increased (p < 0.05))</p>

In resistance-trained men that consumed a high protein diet (~2.51–3.32 g/kg/d) for one year, there were no harmful effects on measures of <u>blood lipids</u> as well as <u>liver and kidney function tests</u>. No deleterious effects on liver or kidney function

Effects of a high protein intake on kidney function and acid excretion in bodybuilders



Resting blood samples taken between 8 and 9 am.


After an overnight fast 24- hour urine were obtained on 30 day of the study to measure pH and estimate kidney function March 2020 DOI: 10.37200/IJPR/V24I7/PR270044

High protein intake in bodybuilders

- 1. Produced a significant increase in serum urea and creatinine.
- 2. Increase endogenous acid production,

REVIEW www.jasn.org

The Effects of High-Protein Diets on Kidney Health and Longevity

Gang-Jee Ko,^{1,2} Connie M. Rhee,¹ Kamyar Kalantar-Zadeh,^{1,3,4} and Shivam Joshi⁵

JASN, 2020. doi: https://doi.org/10.1681/ASN.2020010028

Summary of observational studies of high dietary protein intake and kidney health across large populations

- **1. The Nurses' Health Study.**
- 2. The Multiethnic Study of Atherosclerosis.
- 3. The Prevention of Renal and Vascular End-Stage Disease (PREVEND) study.
- 4. The Gubbio Study.
- **5. The Dutch Generation R Study.**
- 6. The Framingham Heart Study.
- 7. The Cardiovascular Health Study.
- 8. The Singapore Chinese Health Study.

Study Reference	Study or Location	Туре	N (BMI, kg∕m²)	Mean Age (yr)	Mean eGFR (ml/ min per 1.73 m ²)	DM/ HTN HTx (%)	Sex (% male)	Protein Intake in the Highest Group (g/kg per d, g/d, or % of total calorie intake)	Duration (yr)	Variable and Outcome
Knight <i>et al.</i> ¹²	Nurses' Health Study	Prospective cohort	1624 (N/D)	55	90	4/40	0	93 g/d	11	HP was not associated with eGFR decline in
· · ·	•	sociated with rapi s associated with			•	•	ts with	mild CKD		normal renal function. However, it was
Huang et al. ⁷⁴	Taiwan	Cross-sectional	599	60	22	N/D	54	N/D	N/A	associated with accelerated eGFR decline in mild CKD HP was also
			(24.3)							associated with worsening eGFR at increments of -3.50 ml/min per 1.73 m ² , compared with moderate and low protein intake (<i>P</i> <0.001)

Study Reference	Study or Location	Туре	N (BMI, kg∕m²)	Mean Age (yr)	Mean eGFR (ml/ min per 1.73 m ²)	DM/ HTN HT <i>x</i> (%)	Sex (% male)	Protein Intake in the Highest Group (g/kg per d, g/d, or % of total calorie intake)	Duration (yr)	Variable and Outcome
Halbesma et al. ⁷⁵	Prevention of Renal and Vascular ENd- stage Disease (PREVEND)	Prospective cohort	8461 (26.1)	50	81	N/D	N/D	1.4 g/kg per d	7.0	No association between baseline protein intake and rate of renal function decline
Cirillo et al. ¹⁰	Gubbio Study	Prospective cohort	1522 (28)	54	84	5/41	44	2.1 g/kg per d	12	1 g/d higher protein intake was related to – 4.1 ml/min per 1.73 m ² more negative eGFR change and 1.78 risk for incidence of eGFR <60 ml/ min per 1.73 m ²
Beasley et al. ⁷⁶	Cardiovascular Health Study	Prospective cohort mber 2023 . Homa Ho	3623 (26.5)	72	73	14/55	39	1.63 g/kg per d;24% of total calories	6.4	Protein intake was not associated with change in eGFR (P>0.05 for all comparisons)

Study Reference	Study or Location	Туре	N (BMI, kg∕m²)	Mean Age (yr)	Mean eGFR (ml/ min per 1.73 m ²)	DM/ HTN HT <i>x</i> (%)	Sex (% male)	Protein Intake in the Highest Group (g/kg per d, g/d, or % of total calorie intake)	Duration (yr)	Variable and Outcome
Malhotra <i>et al.</i> ⁷⁷	Jackson Heart Study	Observational cohort	3165 (31.8)	55	97	19/57	36	1.0 g/kg per d;19.4%	8	Consumption of protein as percentage of energy intake in lowest and highest quintiles was associated with decline in eGFR among subjects who
Esmeijer <i>et al.</i> ⁷⁸	Alpha Omega Cohort	Prospective cohort	2255 (27.6)	69	82	18/57	80	92 g/d17%	3.5	Patients with a daily total protein intake of ≥1.20 compared with <0.80 g/kg ideal body weight had a twofold faster annual eGFR cysC decline (- 1.60 versus - 0.84 ml/min per 1.73 m ²) in patients post-MI

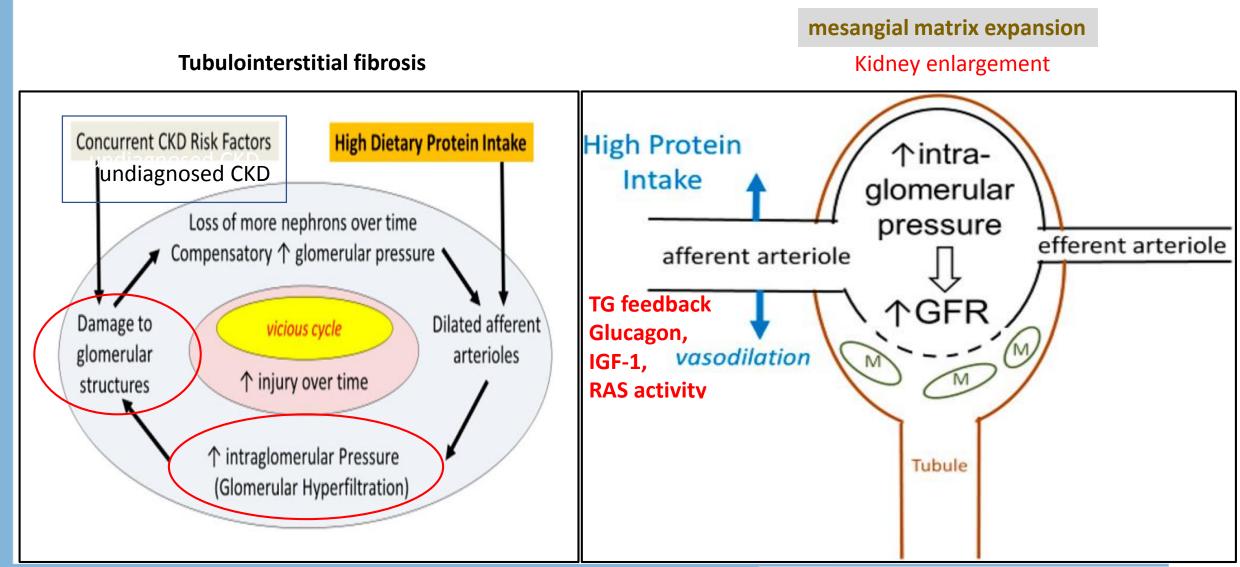
12-15 December 2023 . Homa Hotel, Tehran

Jhee et al.79Korean Genome and Epidemiology StudyProspective cohort9226 (24.5)52947/14481.7 g/kg per dFarhadnejad et al.13Tehran Lipid and Glucose StudyProspective cohort1797 (26.7)387612/184616%	in the lest (g/kg g/d, f total orie	Protein Intake in the Highest Group (g/kg per d, g/d, or % of tota calorie intake)	ke in the ighest up (g/kg I d, g/d, of total alorie	Duration (yr)	n Variable and Outcome
5	g per			11.5	The highest quartile was associated with 1.32-fold increased risk of rapid eGFR decline (95% Cl 1.02 to 1.73)
	%	16%	16%	6.1	The highest tertile of LCHP diet had greater risk of incident CKD (OR, 1.48; 95% CI, 1.03 to 2.15) in comparison to those in the lowest one (P for trend=0.027)

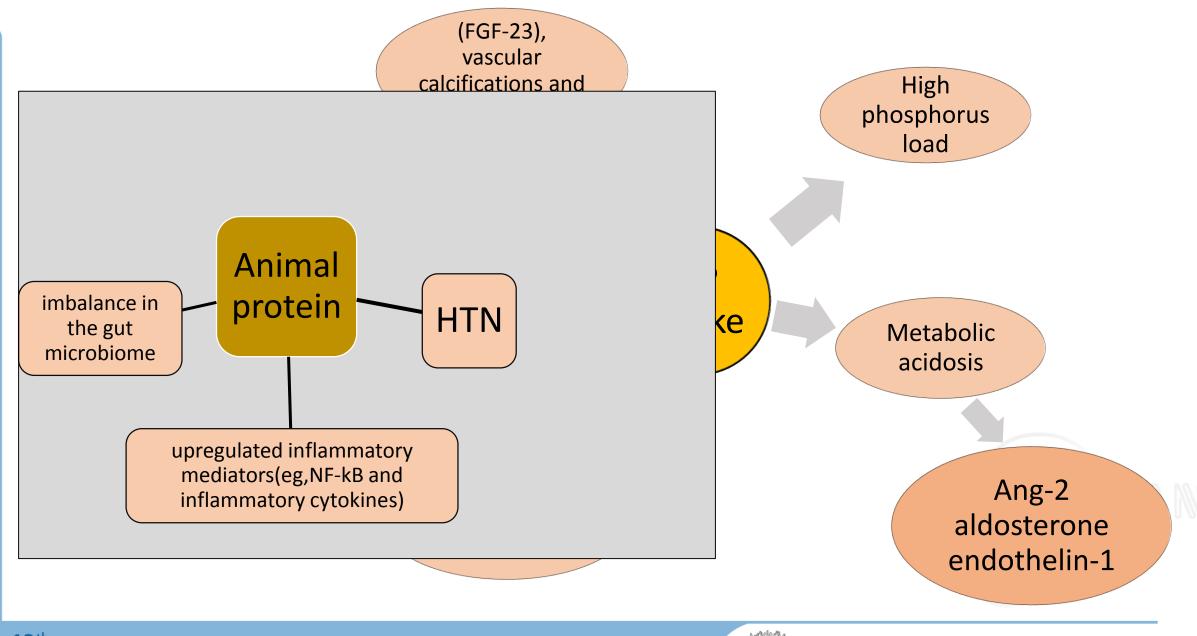
Stu Refer	udy rence	Study or Location	Туре	N (BMI, kg∕m²)	Mean Age (yr)	Mean eGFR (ml/ min per 1.73 m ²)	DM/ HTN HT <i>x</i> (%)	Sex (% male)	Protein Intake in the Highest Group (g/kg per d, g/d, or % of total calorie intake)	Duration (yr)	Variable and Outcome
.ew et	al. ⁵¹	Singapore Chinese Health Study	Prospective cohort	63,257 (23)	57	N/D	9/23	43	65.3 g/d	15.5	Total protein intake was positively associated with
	Repla	st quartile of prote icing one serving c tion of 62.4%	·		•			•	•		incidence of ESKD in a model that adjusted for basic demographic
The	highe adjus	age,gender, dialectest quartile with the sting for other lifes	e lowest quarti tyle and comor	le intake. I bidity facto	Howeve ors	r, the HR wa					$3 \left(O \overline{7} \right)$

12-15 December 2023 . Homa Hotel, Tehran

CONCLUSION

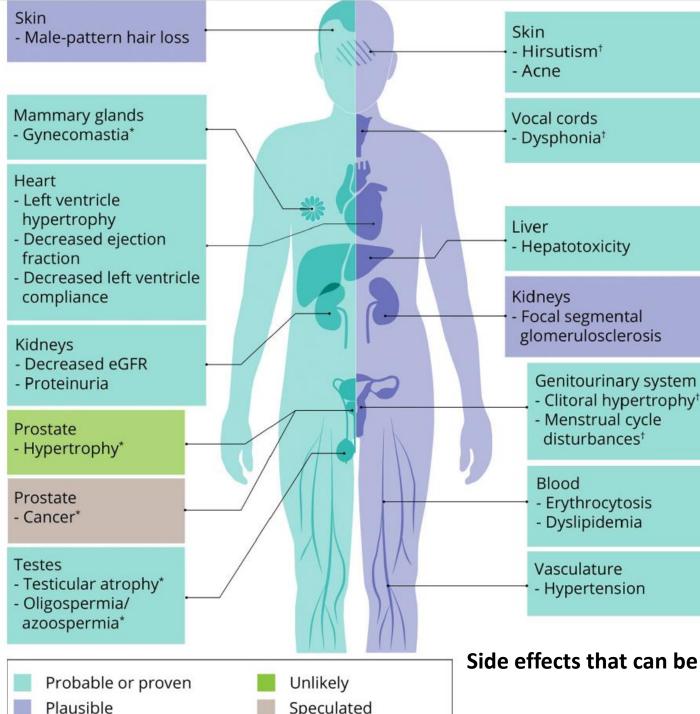

✓ These studies suggest that long-term intake of dietary protein above nutritional recommendations can increase the risk of serious CKD, including ESRD.

✓ High intake of red meat protein and acidifying protein seems to be most harmful.



Oral protein or Amino Acid infusion \rightarrow increase RBF and GFR (hyperfiltration)

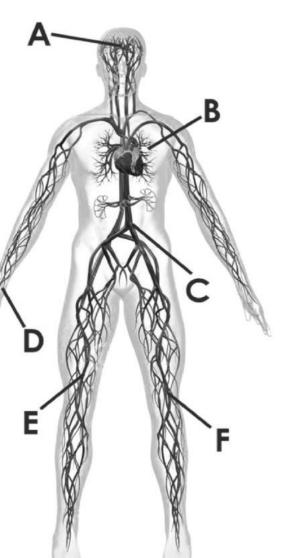
✓ Creatine


✓ Protein

✓ Anabolic androgenic steroids / GH

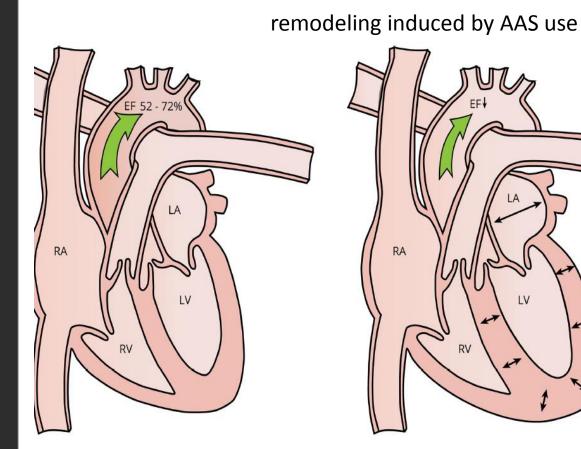
✓ vitamins

In 2014 the global lifetime use prevalence was 3.3%,

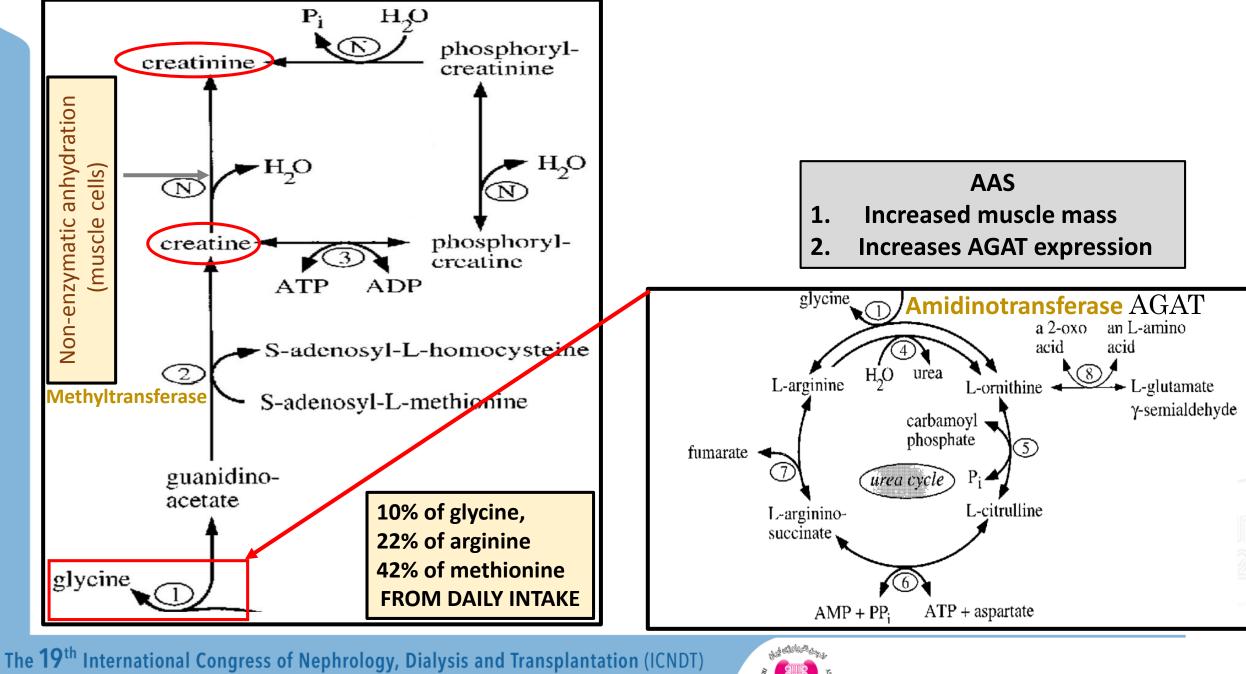

Athletic use;13.4% while Recreational sports people; 18.4%

In the Middle east (21.7%) South America, (4.8%) Europe (3.8%)

Side effects that can be caused by AAS


Frontiers in Endocrinology 2022

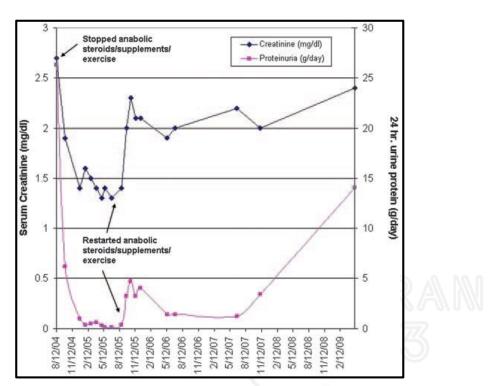
Cardiovascular adverse effects due to a prolonged use of AAS



Cardiovascular effects

- A. Cerebrovascular ischaemic events Superior saggital sinus thrombosis
- B. Pulmonary embolism Coronary disease Reduced systolic function Distolic dysfunction relaxation abnormally Arrhytmias Myocardial infarction Sudden death arrhytmias sudden death Left ventricular hypertrophy
- C. Blood pressure elevation Pro-atherogenic effects
- **D.** Alterated vascular reactivity
- E. Peripheral arterial disease
- F. Deep venous thrombosis

Frontiers in Endocrinology 2022


12-15 December 2023 . Homa Hotel, Tehran

AND SOCIETY OF NEW

Development of Focal Segmental Glomerulosclerosis after Anabolic Steroid Abuse

Table 1. Demographics and clinical history

Patient	Age	Race/ Gender	Height (in)	Weight (kg)	BMI	Exercise	Hormone Use	Supplements/Diet	Hypertension?	Other PMHx
1	30	W/M	71	134	41	Bodybuilding	AASs including M-1-T (testosterone prohormone), GH, and insulin for >10 yr	Creatine, amino acid supplements, glutamate, >550 g/d protein diet	HTN (duration unknown)	Sleep apnea
2	31	W/M	63	102	40	Bodybuilding	AASs including stanzolo and durabolin for 8 yr	High-protein diet (300 to 400 g/d) and protein shakes	HTN for 3 mo	None
3	41	W/M	68	93	31	Bodybuilding	AASs and GH for 20 yr	High-protein shakes	HTN for 5 yr	None
4	28	H/M	66	100	36	Bodybuilding	AASs and GH, "for years"	Creatine for 5 yr	No	None
5	49	W/M	72	114	34	Bodybuilding	AASs "for years"	High-protein diet	No	HIV for 21 yr, on HA undetectable viral load, diabetes
6	38	H/M	71	96	30	Bodybuilding	AASs including sustanon durabolin, primobolan, equipoise, and winstrol "for years"	Unknown	No	None
7	38	H/M	71	107	33	Bodybuilding	AASs and GH for 8 to 10 yr	Creatine, amino acid supplements, 500 g/d protein diet	HTN (duration unknown)	Sleep apnea
8	33	H/M	69	81	27	Bodybuilding	AASs "for years"	High-protein diet	HTN (duration unknown)	None
9	45	W/M	68	130	43	Powerlifting	AASs including testosterone ethanate and deca-durabolin for 15 yr	Amino acid supplements, 300 g/d protein diet	HTN for 18 mo	None
10	40	W/M	67	95	33	Bodybuilding	Intramuscular testosterone injections for "many years"	High-protein diet with 5 protein shakes/d	No	Cocaine use, occasio UTIs

J Am Soc Nephrol 21: 163–172, 2010

Association of focal segmental glomerulosclerosis and proteinuria in a cohort of 10 bodybuilders

		Light N	licroscopy			Electron	A B B B B B B B B B B B B B B B B B B B
Patient	Pattern	Global Sclerosis	Segmental Sclerosis	TA/IF (%)	Arteriosclerosis	Microscopy	
1	FSGS with collapsing features	16 of 22	4 of 22	80	Mild	95% FPE	
2	FSGS, perihilar variant, glomerulomegaly	4 of 17	8 of 17	40	None	90% FPE	Sold And And And And And And And And And An
3	FSGS NOS	4 of 7	3 of 7	85	Moderate	80% FPE	
4	FSGS NOS, glomerulomegaly	4 of 6	1 of 6	60	Mild	NA	
5	FSGS NOS, glomerulomegaly	0 of 13	2 of 13	15	Mild	50% FPE	
6	Glomerulomegaly	0 of 15	0 of 15	<5	Mild	Moderate FPE, rare intramembranous lucencies	
7	FSGS with perihilar lesions, focal cellular and collapsing features	9 of 15	3 of 15	40	Mild to moderate	85% FPE	
8	FSGS with perihilar lesions, focal collapsing features	7 of 61	15 of 61	15	Mild	15% FPE	
9	FSGS, perihilar variant	5 of 8	2 of 8	60	Moderate	NA	
10	FSGS NOS, glomerulomegaly	9 of 17	6 of 17	90	Moderate	90% FPE	J Am Soc Nephrol 21: 163–172, 2010

RESEARCH ARTICLE

Open Access

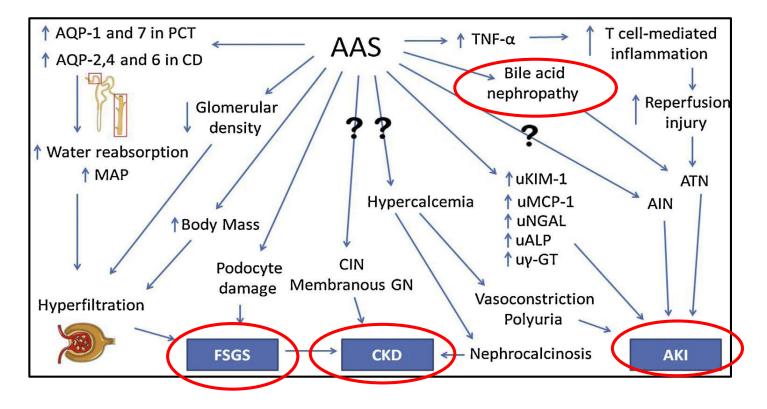
The potential effects of anabolicandrogenic steroids and growth hormone as commonly used sport supplements on the kidney: a systematic review

Dorna Davani-Davari¹, Iman Karimzadeh^{1*} and Hossein Khalili²

Methods: The search strategy was in accordance with the PRISMA guideline. Seven databases such as Scopus, Medline, Embase, and ISI Web of Knowledge were searched using keywords, such as <u>"growth hormone"</u>, <u>"anabolic-androgenic steroids"</u>, and <u>"kidney injury"</u>. Articles published from 1950 to December 2017 were considered. Randomized clinical trials, prospective or retrospective human studies, case series as well as case reports, and experimental (in vivo) studies were included. Twenty one clinical and experimental articles were selected (12 for anabolic-androgenic steroids and 9 for GH).

38.1% of studies about possible effects of AAS and GH on the kidney were animal investigations.

experimental and clinical studies about the renal safety of AAS (n=12)


Table 1 Summary of experimental an	d clinical studies about	the renal safe	ety of anabolic-androgenic steroids ($n = 12$)	
Dose & Duration	Subjects	Type of study	Main results	Reference
50 mg/day dihydrotestosterone intraperitoneally for 10 days	Rats	Experimental	 Increase in blood pressure, and proximal tubule volume reabsorption Decrease in serum angiotensin II level No change in glomerular filtration rate 	Quan et al. 2004 [29]
500 µg/kg/day testosterone propionate intramuscularly for 2 weeks	Castrated male and oophorectomized female rats with obstructive renal injury	Experimental	Increase in TNF-α production and pro-apoptotic and pro- fibrotic signaling leading to increased apoptotic cell death, tubulointerstitial fibrosis, and renal dysfunction	Metcalfeet al 2008 [28]
0.75 or 2.0 mg/day dihydrotestosterone as subcutaneous implants for 14 weeks	Castrated diabetic male rats	Experimental	 Low doses attenuated castration-associated increases in urine albumin excretion, glomerulosclerosis, and tubuloin- terstitial fibrosis High doses exacerbated castration-associated increases in urine albumin excretion, glomerulosclerosis, and tubuloin- terstitial fibrosis 	Xu et al. 2009 [<mark>56</mark>]
Testosterone implants (20 mg/capsule) changed every 2 weeks	Hypertensive rats on a high sodium diet	Experimental	 Increase in blood pressure & renal sodium reabsorption Increase in glomerulosclerosis 	Liu&Ely 2011 [33]
Single dose of testosterone (12.5 mg/pellet) orally	Female estrogen receptor knockout mice	Experimental	Inducing podocyte apoptosis by androgen receptor activation, independent of the TGF-β1 signaling pathway	Doublier et al. 2011 [48]
Combination of 0.75 mg/day dihydrotestosterone as subcutaneous implants and 0.15 mg/kg/day anastrozole orally for 12 weeks	Diabetic male rats	Experimental	 Attenuating albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis Decrease in the density of renal cortical CD68-positive cells Decrease in the expression of transforming growth factor- β, collagen type IV, TNF-α, and IL-6 	Manigrasso et al. 2012 [55]
Case 1: Not defined	Case 1: 21-year-old male athlete	Case report and case series	 Arterial hypertension, oliguria, leukocyturia, hematuria and proteinuria, increase in serum urea and creatinine Moderate interstitial inflammatory infiltrate with eosinophils, interstitial edema, calcium deposits, and mild acute tubular necrosis 	Daher et al. 2009 [20]
Case 2: Not defined	Case 2: 30-year-old male bricklayer		 Increase in serum urea and creatinine, hematuria and proteinuria Mild interstitial lymphmononuclear inflammatory infiltrate with eosinophils without remarkable tubular abnormalities 	
Case series: Not defined	Case series: Males & Fernales aged between 21 and 63 years		 Interstitial nephritis and hypercalcemia secondary to vitamin D intoxication caused acute kidney injury 	
At least one anabolic steroid (e.g., testosterone 500 mg twice weekly) intramuscularly for several months	10 body builders aged between 28 and 49 years	Case series	 Proteinuria, renal insufficiency, and nephrotic syndrome Focal segmental glomerulosclerosis, tubular atrophy, and interstitial fibrosis 	Herlitz et al. 2010 [57]
Not defined	38-year-old man	Case report	 High serum creatinine, high serum urea, low hemoglobin level Intrinsic renal parenchymal and focal segmental glomerulosclerosis 	Harrington et al. 2011 [58]
 Nandrolone intramuscular injection 400 mg twice per week for 6 weeks Testosterone intramuscular injection 400 mg once per week for 6 weeks 	41-year-old male bodybuilder	Case report	Acute kidney injury with the pathology of diffuse acute tubular injury due to bile acid nephropathy with the pathology of tubular bile acid casts	Luciano et al. 2014 [19]
Case 1: Stanozolol intramuscular injection 10 mg three times per week for 5 weeks Case 2: Stanozolol intramuscular injection 1 mg three times per week for 6 weeks	Case 1: 30-year-old male amateur bodybuilder Case 2: 43-year-old male amateur bodybuilder	Case report	Bile cast nephropathy due to cholestatic jaundice characterized by acute tubular epithelial cell damage along with increased serum creatinine and oliguria	Tabatabaee et al. 2015 [23]
Oxandrolone, boldenone undecyclenate, stanozolol, and trenabol (with not-defined daily dose and duration of treatment)	28-year-old male bodybuilder	Case report	Acute kidney injury in the setting of severe cholestatic jaundice with the pathology of bile inclusions within tubular cells and interstitial edema	Alkhunaizi et al. 2016 [24]

experimental and clinical studies about the renal safety of growth hormone (n=9)

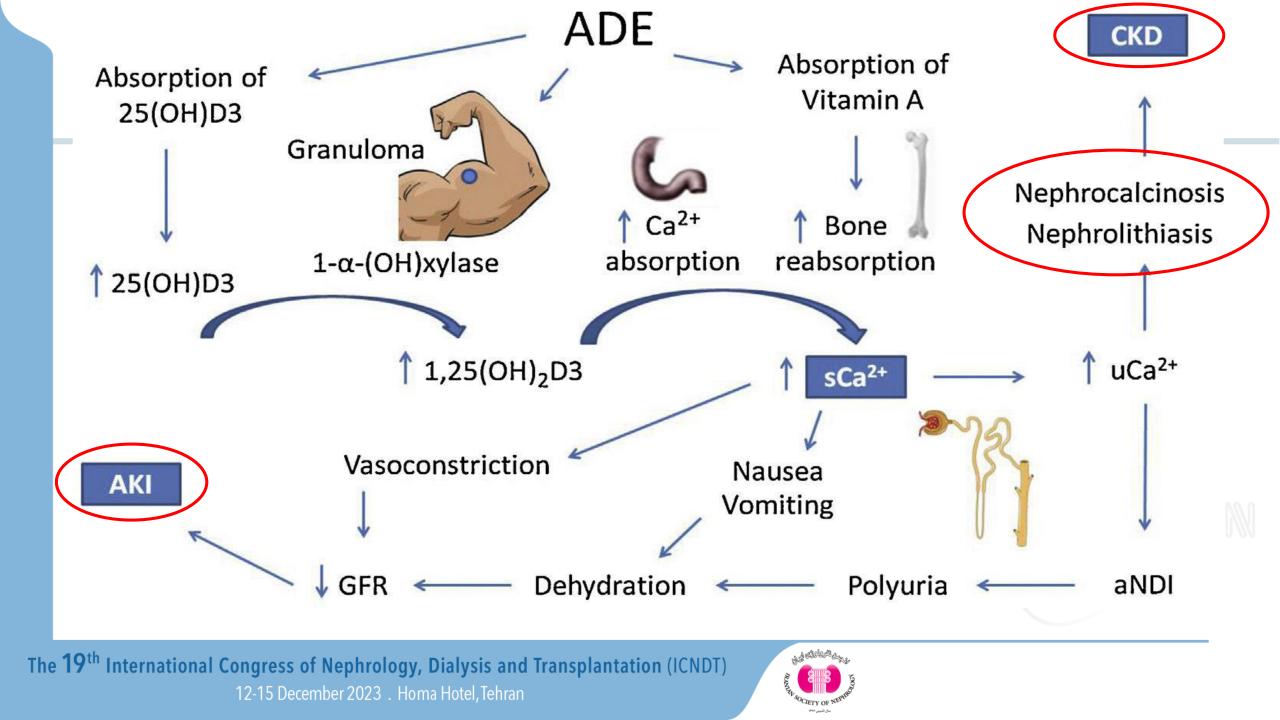
Dose & Duration	Subjects	Type of study	Main results	Reference
2.5, 5, 10, and 20 IU/kg/day subcutaneously for 4–60 days	Female rats	Experimental	 Dose-dependent increase in renal weight No change in kidney dry weight/ body weight ratio Increase in renal glomerular and tubular cell proliferation and renal DNA/protein ratio 	Mehls et al. 1993 [86]
0.025, 0.1, and 1 IU/kg/day subcutaneously for 14 weeks	Male and female dogs	Experimental	 Increase in body weight gain and kidney weights Glomerular deposits, mesangial thickening, and very slight cellular infiltration in glomeruli Increase in the renal glomerular area Glomerular basal lamina thickening Increase in mesangial matrix 	Molon- Noblot et al 2000 [87]
5–10 mg/day for 3–9 days	2 patients with hypopituitarism, 1 with cirrhosis of the liver and 2 with chronic nephritis and uremia	Case report	 Decrease in plasma urea level and urea excretion Prompt increase in creatinine clearance and phosphorus reabsorption 	Gersh berg 1960 <mark>[80]</mark>
More than 400 mg/week testosterone proprionate and/or nandrolone deconate intramuscularly	4 body builders aged between 20 and 26 years	Case report	 Increase in serum creatinine and decreased in eGFR Development of acute tubular necrosis 	Almukhtar et al. 2015 [22]
50 ng/kg/min as an infusion for 2 h	Healthy men	Pilot clinical trial	- Decrease in renal plasma flow - No change in GFR	Parving et al. 1978 [<mark>81</mark>]
2 IU in the morning and 4 IU in the evening subcutaneously for 1 week	Healthy men	Pilot clinical trial	 Increase in GFR and renal plasma flow No significant change in kidney size and urinary excretion rates of albumin and β2-microglobulin 	Christian <i>s</i> en et al. 1981 [93]
0.125 IU/kg per week subcutaneously for the first 4 weeks and 0.25 IU/kg per week for the subsequent 5 months	Growth hormone deficient adults	Double-blind, placebo-controlled cross-over clinical trial	- No change in GFR and renal plasma flow - No effect on kidney size	Riedl et al. 1995 <mark>[82</mark>]
0-02 IU/kg/day (or 7 μg/kg/day) subcutaneously for 10 months	Adults with childhood onset GH deficiency	Pilot clinical trial	 Increase in left ventricular-mass index and kidney length No abnormalities or change in the urine analysis 	Link et al. 2001 [94]
6 IU/m ² per day subcutaneously for 6 days	Healthy volunteer males	Randomized, cross- over clinical trial	 Increase in the plasma renin Increase in distal tubule sodium and water reabsorption Decrease in mean 24-h urinary output and mean 24-h urinary sodium excretion 	Hansen et al. 2001 [99]

Evidence regarding adverse effects of anabolic-androgenic steroids on kidney exists; AKI CKD FSGS

GH's exact effect on the kidney at doses used by athletes and body builders has not yet been clarified.

All major sports organizations have banned AAS use

✓ Creatine


✓ Protein

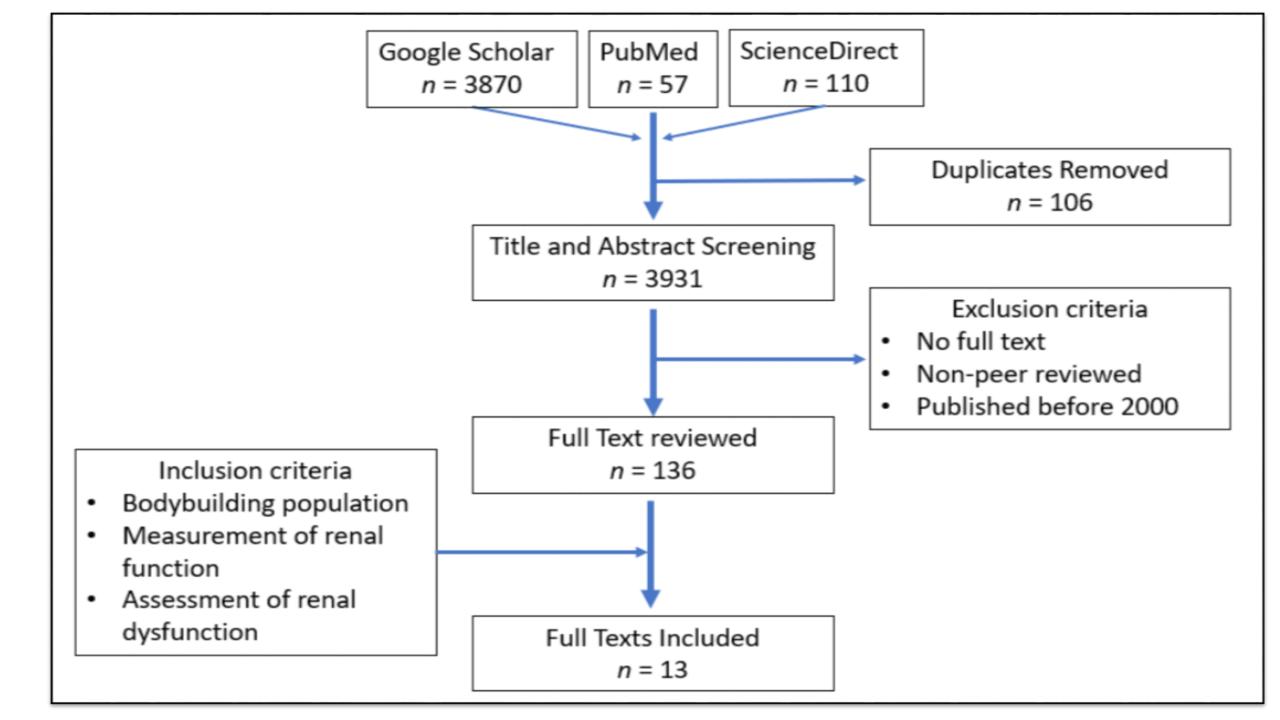
✓Anabolic androgenic steroids / GH

✓ vitamins

TEHIRAN 2023

International Journal of *Environmental Research and Public Health*

Review


Nutritional and Non-Nutritional Strategies in Bodybuilding: Impact on Kidney Function

Victoria Tidmas ¹, Jon Brazier ^{1,*}, Janine Hawkins ², Scott C. Forbes ³, Lindsay Bottoms ¹, and Ken Farrington ^{2,4}

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

3 April 2022

Bodybuilding (BB) is popular recreationally & competitively. Extreme training and dietary regimes are used to achieve muscular definition and symmetry.

Creatine

Loading 20g/day

Maintenance 5 g/day

Prolonged &

High intake

=

Safe

97% of **BB** utilise supplements Increased concern of effect on health, particularly on the Kidneys

13 articles relating to Bodybuilding and **Kidney Disease**

Acute interstitial nephritis Acute tubular necrosis Focal segmental glomerulosclerosis (FSGS) Nephrocalcinosis

Chronic Interstitial Nephritis

Acute Kidney **Chronic Kidney** Injury (AKI) Disease (CKD)

End Stage Kidney Disease (ESKD)

Renal decline

Protein

- 5 g/kg/day

Hyperfiltration

steroids

1 AKI

Later presentation

1 Severity

▲ FSGS

A, D, E

Nephrocalcinosis

NSAID and Diuretics

Not specified

Up to 250mg/day Up to 20 times the recommended for livestock testosterone

AKI & CKD 1 AKI & CKD 1 Hypercalcaemia

High Protein, Creatine Anabolic Androgenic Steroids Conclusion Vitamins NSAID, Diuretics

Increase risk of developing AKI, CKD, & ESKD

Multiple concurrent practices. Inaccurate measure of intakes. Training phase not specified. Little attempt to detect subclinical disease

Research needed to isolate effects of supplements and define risks

1-Which organ doesn't play role in <u>creatine</u> production ?

a-liver b-kidney c-pancreas <mark>d-muscle</mark>

2-Which protein doesn't increase <u>GFR?</u> a-white egg b-fish c-soy d-beef

